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Abstract:  A new index of item discrimination power (IDP), dimension-ÃÏÒÒÅÃÔÅÄ 3ÏÍÅÒÓȭ $ ɉ$ςɊ ÉÓ ÐÒÏÐÏÓÅÄȢ 3ÏÍÅÒÓȭ $ ÉÓ ÏÎÅ ÏÆ ÔÈÅ 
superior alternatives for itemɀtotal- (Rit) and itemɀrest correlation (Rir) in reflecting the real IDP with items with scales 0/1 and 
0/1/2, that is, up to three categories. D also reaÃÈÅÓ ÔÈÅ ÅØÔÒÅÍÅ ÖÁÌÕÅ Ϲρ ÁÎÄ ״ρ ÃÏÒÒÅÃÔÌÙ ×ÈÉÌÅ 2ÉÔ ÁÎÄ 2ÉÒ ÃÁÎÎÏÔ ÒÅÁÃÈ ÔÈÅ 
ultimate values in the real-ÌÉÆÅ ÔÅÓÔÉÎÇ ÓÅÔÔÉÎÇÓȢ (Ï×ÅÖÅÒȟ ×ÈÅÎ ÔÈÅ ÉÔÅÍ ÈÁÓ ÆÏÕÒ ÃÁÔÅÇÏÒÉÅÓ ÏÒ ÍÏÒÅȟ 3ÏÍÅÒÓȭ $ ÕÎÄÅÒÅÓÔÉÍÁÔÅÓ )$0 
more than Pearson correlation. A simple correcÔÉÏÎ ÔÏ 3ÏÍÅÒÓȭ $ ÉÎ ÔÈÅ ÐÏÌÙÔÏÍÏÕÓ ÃÁÓÅ ÓÅÅÍÓ ÔÏ ÌÅÁÄ ÔÏ ÂÅ ÅÆÆÅÃÔÉÖÅ ÉÎ ÉÔÅÍ ÁÎÁÌÙÓÉÓ 
settings.  In the simulation with real-life items, D2 showed very few cases of obvious underestimation and practically no cases of 
obvious overestimation. With certain restrictions discussed in the article, D2 seems to be a good alternative for these classic 
estimators not only with dichotomous items but also with the polytomous ones. In general, the magnitudes of the estimates by D2 
are higher than those by Rit, Rir, and polychoric correlation and they seem to be close of those of bi- and polyserial correlation 
coefficients without out-of-range values. 
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Introduction  

Item discrimination and the deterministic pattern 

Item discrimination power (IDP)ɂone of the three essential parameters of a test itemɂis classically defined as the 
efficiency of a single item to discriminate between lower- and higher-scoring test-takers (see Educational Testing 
Service [ETS]ȟ ςπςπȠ ,ÉÕȟ ςππψȠ ,ÏÒÄ Ǫ .ÏÖÉÃËȟ ρωφψȠ -ÁÃ$ÏÎÁÌÄ Ǫ 0ÁÕÎÏÎÅÎȟ ςππςɊȢ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊ ÎÏÔÅÓ 
that this loose definition is not very practical while assessing the possible under- and overestimation produced by 
different estimators of IDP in the real-life settings. Hence, he discusses an operational definition of IDP related to the 
concept of deterministic item discrimination . Deterministic item discrimination refers to the pattern in which the score 
explains perfectly the behavior in the item, and then we expect to see the perfect explaining power between two 

variables ( 2 1XYr = ) that implies the perfect association ( 1XYr = ). In other words, when the latent trait can predict the 

behavior of the test-takers in the test item in a deterministic manner the test item is ultimately reliable. In practical 
settings related to item analysis, the perfect explaining power is achieved when the order of the cases both in the item 
and the score ÁÒÅ ÉÄÅÎÔÉÃÁÌȢ (ÅÎÃÅȟ -ÅÔÓßÍÕÕÒÏÎÅÎ ÄÅÆÉÎÅÓ ÔÈÅ ÕÌÔÉÍÁÔÅ )$0 ÁÓ Á ÃÏÎÄÉÔÉÏÎ ×ÈÅÒÅ ȰÁÆÔÅÒ ÁÒÒÁÎÇÉÎÇ ÔÈÅ 
test-takers by the score, or the measurement scale, the item can discriminate the lower performing test-takers from the 
higher performing test-takers in Á ÄÅÔÅÒÍÉÎÉÓÔÉÃ ÍÁÎÎÅÒȱ ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁȟ ÐȢ ςπψɊȢ  

When it comes to detecting the ultimate IDP, two widely used classical estimators of IDP, itemɀtotal correlation (
gXr , 

Rit; based on Pearson, 1896) and itemɀrest correlation (
gPr , Rir; Henrysson, 1963), are not strong; they cannot reach 

the ultimate value 1XYr =  because of the mismatch of the dimensions of the item and the score, and the 

underestimation of IDP may be drastic if the iteÍ ÄÉÆÆÉÃÕÌÔÙ ÉÓ ÅØÔÒÅÍÅ ɉÅȢÇȢ -ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρφȠ ςπρχÁȠ ςπςπÁȠ 
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2020b). Two other estimators of IDP, bi- and polyserial correlation coefficients, by using standard procedures of 
estimation (see Drasgow, 1986), tend to give obvious overestimates (out-of-range values) when 

gXr  and item variance 

are high (e.g. Lord & Novick, 1968). This is specifically true with the deterministic patterns with non-normal or even 
ÄÉÓÔÒÉÂÕÔÉÏÎ ÉÎ ÔÈÅ ÓÃÏÒÅ ɉÓÅÅ ÍÏÒÅ ÒÅÃÅÎÔ ÌÉÔÅÒÁÔÕÒÅ ÁÎÄ ÅØÁÍÐÌÅÓ ÉÎ -ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁȠ ςπςπÂɊȢ !ÌÓÏ ÏÎÅ ÏÆ ÔÈÅ 
superior alternatives to 

gXr  and 
gPr , polychoric correlation (Pearson, 1900; 1913), cannot reach the ultimate IDP by 

using standard procedures of estimation because of the technical reasons.  In the deterministic patterns, one of the 
ȰÓÕÐÅÒÉÏÒ ÁÌÔÅÒÎÁÔÉÖÅÓȱ ÔÏ 

gXr ȟ 3ÏÍÅÒÓȭ D ɉ3ÏÍÅÒÓȟ ρωφςȠ ÓÅÅ -ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁɊȟ ÒÅÁÃÈÅÓ ÃÏÒÒÅÃÔÌÙ ÔÈÅ ÖÁÌÕÅÓ Ϲρ 

ÁÎÄ Ϻρȟ ÉÔ ÉÓ ÓÔÁÂÌÅ ×ÉÔÈ ÅØÔÒÅÍÅ ÖÁÌÕÅÓ ɉ.Å×ÓÏÎȟ ςππςɊȟ ÁÎÄ ÉÔ ÇÉÖÅÓ ÅÓÔÉÍÁÔÅÓ ÆÏÒ )$0 ÔÈÁÔ ÁÒÅ ÒÅÍÁÒËÁÂÌÙ ÃÌÏÓÅÒ ÔÈÅ  
real IDP than Rit  and Rir ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁɊȢ 4ÈÅÓÅ ÁÒÅ ÁÄÖÁÎÃÅÓ ÉÎ ÔÈÅ ÐÒÁÃÔÉÃÁÌ ÅÄÕÃÁÔÉÏÎÁÌ ÔÅÓÔÉÎÇ ÓÅÔÔÉÎÇÓȟ 
when the sample sizes may be small and the normality in the score cannot be ensured (see examples in Aslan & Aybek, 
2019; Delil & Ozcan, 2019). Hence, the ÃÈÁÒÁÃÔÅÒÉÓÔÉÃÓ ÏÆ 3ÏÍÅÒÓȭ D are worth of studying in measurement modeling 
settings.  

3ÔÁÔÉÓÔÉÃÁÌ ÍÏÄÅÌ ÌÁÔÅÎÔ ÔÏ 3ÏÍÅÒÓȭ $ 

Assume two ordinal observed variables g (item) and X (score) that have r and s distinctive categories, respectively. 

Within the measurement modelling settings, the observed values gi and xj are driven by a continuous latent variable q 

common to both variables. The threshold values of q for each category in g are denoted by 
igand in  X by jt. Then, the 

variable g is related to  q so that g = g
i
, if 

1  i ig q g-¢ <, i Ѐ ρȟ ςȟȣȟ R and X = xj, if  1   j jt q t-¢ < , j Ѐ ρȟ ςȟ ȣȟ S as illustrated 

in Figure 1. We define that  
0 0g t= =-¤and 

R Sg t= =+¤,  and we assume that 
1 i rg g g< <  and 

1 j sx x x< < . 

 

 

Figure 1. A latent variable q categorized into two ordinal scales and the number of times the observation (gi, xj) is 

obtained in the sample (n
g X

.) 

From the traditional viewpoint of correlation coefficients related to the item analysis, the observed correlation between 
the interval-scaled variables g and X is itemɀtotal correlation (

gXr ), the observed correlation between the binary g and 

ordinal X is rank-biserial correlation (
RBr ), the inferred correlation between the latent q and observed X is polyserial 

correlation (
Xqr ), and the inferred correlation between two latent variables is polychoric correlation (

qqr ). In the last, 

within the measurement modelling settings, we would expect to obtain perfect correlation, and the further 
qqr  is from 

1, the more measurement error is included in the measurement instruments, including both items and the score. We 
note that the correlational viewpoint to the item discrimination is based on covariance between the item and the score. 

&ÒÏÍ ÔÈÅ ÖÉÅ×ÐÏÉÎÔ ÒÅÌÅÖÁÎÔ ×ÉÔÈ ÔÈÉÓ ÁÒÔÉÃÌÅȟ ÔÈÅ ÆÁÍÉÌÙ ÏÆ 3ÏÍÅÒÓȭ Dȟ ÉÎÃÌÕÄÉÎÇ +ÅÎÄÁÌÌȭÓ ÔÁÕ-a and tau-b (Kendall, 
1938), and GoodmanɀKruskal G (Goodman & Kruskal, 1954), item discrimination is approached from the probability 
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ÖÉÅ×ÐÏÉÎÔȢ 3ÏÍÅÒÓȭ D estimates the probability (ʌ) that two randomly chosen pair of test-takers have the same order in 
both the item and score (see Van der Ark & Van Aert, 2015). The probability for the same order is   

1 1

R C

P rc ij ij

r c i r j c i r j c

p p p p
= = > > < <

å õ
= +æ ö

ç ÷
ää ää ää    (1a) 

and the probability for the opposite order is  

1 1

R C

Q rc ij ij

r c i r j c i r j c

p p p p
= = > < < >

å õ
= +æ ö

ç ÷
ää ää ää   (1b) 

The probabilities of tied pairs related to rows and columns are 
RTp  and 

CTp , respectively. The latent ɿ proportions the 

probabilities of P and Q with maximal possible number of pairs to the same direction (including also the tied pairs). 
Hence, the relevant direction related to the article, that is, the latent ɿ conditioned so that the column factor explains 
the row factor is defined as 

R

P Q

P Q T

p p
d
p p p

-
=

+ +
.    (2)  

 
3ÏÍÅÒÓȭ $ ÉÎ ÔÈÅ ÐÒÁÃÔÉÃÁÌ ÉÔÅÍ ÁÎÁÌÙÓÉÓ ÓÅÔÔÉÎÇÓ 

3ÏÍÅÒÓȭ D approximates the latent ɿȢ The computational forms of 3ÏÍÅÒÓȭ D are usually expressed by using the 
concepts of concordance and discordance between the values of g and X. By using the concepts of P and Q, the specific 

coefficient relevant to item analysis, D given g in condition of Xȟ ÔÈÁÔ ÉÓȟ 3ÏÍÅÒÓȭ ( )D g X ɖ, has a simplified form of  

( )
( )

( )2 2

1

2
R

i

i

P Q
D g X D

N n
=

-
= =

-ä

     (3)  

where gin  is the number of cases in the categories g = i related to item g and 
,

ij ij

i j

P n N+=ä  and 
,

ij ij

i j

Q n N-=ä

ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρχÂȠ 3ÉÅÇÅÌ Ǫ #ÁÓÔÅÌÌÁÎȟ ρωψψȠ ÎÏÔÅ ÔÈÁÔȟ ÉÎ ÔÈÅ ÌÉÔÅÒÁÔÕÒÅ ÒÅÌÁÔÅÄ ÔÏ 3ÏÍÅÒÓȭ D, this is notated as 

( )D X g ). 
ijN+refers to the number of pairs in the cells below and to the right  of the cell nij. Correspondingly, 

ijN-refers 

to the number of pairs in the cells below and to the left of the cell nij. The form is simplified because the values of P and 
Q ÁÒÅ ÃÁÌÃÕÌÁÔÅÄ ÏÎÌÙ ÉÎ ÏÎÅ ÄÉÒÅÃÔÉÏÎȠ ÍÏÒÅ ÃÏÍÐÌÉÃÁÔÅÄ ÆÏÒÍ ÒÅÌÁÔÅÄ ÔÏ %ÑÓȢ ɉρɊ ÁÎÄ ɉςɊ ÉÓ ÓÅÅÎ ÉÎ 3ÅÃÔÉÏÎ Ȱ!ÓÙÍÐÔÏÔÉÃ 
ÓÁÍÐÌÉÎÇ ÖÁÒÉÁÎÃÅ ÁÎÄ ÓÔÁÎÄÁÒÄ ÅÒÒÏÒȱȢ The statistical properties of 3ÏÍÅÒÓȭ D have been discussed, for example, by 
Agresti (2010), Newson (2002; 2006; 2008) and Siegel and Castellan (1988), and practical procedures, for example, by 
-ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπρχÂɊȢ  

Because of Eq. (3), Somersȭ ( )D g X   tells the proportion of the logically ordered test-takers in the item after the cases 

ÁÒÅ ÏÒÄÅÒÅÄ ÂÙ ÔÈÅ ÓÃÏÒÅȢ 4ÈÉÓ ÆÉÔÓ ×ÅÌÌ ×ÉÔÈ ÔÈÅ ÄÅÆÉÎÉÔÉÏÎ ÂÙ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊ ÒÅÌÁÔÅÄ ÔÏ )$0Ȣ !Ó ÄÏÅÓ ÔÈÅ 

correlation coefficient, ( )D g X varies between ɀ1 and +1. In the item analysis settings, the value ( )D g X = +1 

indicates the positive deterministic pattern: after ordered by the score, all the test-takers in the higher-ranked 

subsample(s) j in the item are (correctly) ranked higher than those in the lower subsample(s) i. The value ( )D g X = ɀ

1 indicates the ultimately pathological situation that all the cases in the lower subsample(s) i would be ranked higher 

than those in the higher subsample j. The value ( )D g X = 0 refers to a situation that the number of correctly ordered 

                                                        
ɖ )Ô ÉÓ ÇÏÏÄ ÔÏ ÎÏÔÅ ÔÈÅ ÓÅÅÍÉÎÇÌÙ ÃÏÎÆÕÓÉÎÇ ÎÏÔÁÔÉÏÎ ÒÅÌÁÔÅÄ ÔÏ 3ÏÍÅÒÓȭ D ÐÏÉÎÔÅÄ ÂÙ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊȢ )Î ÔÈÅ ÔÒÁÄÉÔÉÏÎÁÌ ÓÅÔÔÉÎÇÓ ÏÆ 

conditions, the direction of condition ( )g X  ÕÓÕÁÌÌÙ ÍÅÁÎÓ Ȱg in condition of Xȱȟ ÔÈÁÔ ÉÓȟ Ȱg is dependent on Xȱ, that is ȰÇ dependentȱȢ However, within 

ÔÈÅ ÎÏÔÁÔÉÏÎ ÒÅÌÁÔÅÄ ÔÏ 3ÏÍÅÒÓȭ D, ( )D X g  ÉÓ ÃÁÌÌÅÄ Ȱg ÄÅÐÅÎÄÅÎÔȱ ɉÓÅÅ -ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρχÂȠ .Å×ÓÏÎȟ ςππςȠ ςππφȠ ςππψȠ 3ÉÅÇÅÌ Ǫ #ÁÓÔÅÌÌÁÎȟ 

1988). In this article, the specific notation ( )D g X  ÒÅÆÅÒÓ ÔÏ Ȱg ÄÅÐÅÎÄÅÎÔȱ ×ÈÉÃÈȟ ÉÎ ÔÈÅ ÏÕÔÐÕÔÓ ÏÆ ÓÏÍÅ ÇÅÎÅÒÁÌÌÙ ËÎÏ×Î ÓÏÆÔ×ÁÒÅ ÐÁÃËÁÇÅÓ ÓÕÃÈ ÁÓ 

IBM SPSS as well as R ÌÉÂÒÁÒÉÅÓȟ ×ÏÕÌÄ ÂÅ ÃÁÌÌÅÄ ȰÓÃÏÒÅ ÄÅÐÅÎÄÅÎÔȱȢ 3ÅÅ ÔÈÅ ÐÒÁÃÔÉÃÁÌ ÎÏÔÅÓ ÏÆ ÔÈÉÓ ÎÏÔÁÔÉÏÎ ÉÎ ÒÅÌÁÔÉÏÎ ÔÏ ÔÈÅ ÅÓÔÉÍÁÔÅÓ ÉÎ 
-ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊȢ  
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ɉȰÃÏÎÃÏÒÄÁÎÔȱɊ ÔÅÓÔ-ÔÁËÅÒÓ  ÅÑÕÁÌÓ ÔÈÅ ÉÎÃÏÒÒÅÃÔÌÙ ÏÒÄÅÒÅÄ ɉȰÄÉÓÃÏÒÄÁÎÔȱɊ ÔÅÓÔ-takers and, hence, the item cannot 
discriminate the test-takers from each other at all. Basically, the interpretation in the magnitude of the estimates by

( )D g X is the same as that in
gXr with the note that, in real-life datasets, 

gXr cannot reach perfect +1 or ɀ1 while 

( )D g X can.  

By using a comparison with real-ÌÉÆÅ ÉÔÅÍÓȟ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊ ÓÈÏ×ÅÄ ÔÈÁÔ 3ÏÍÅÒÓȭ ( )D g X , (D henceforward), 

would be a good alternative for the generally used classical estimators of IDP. This is specifically true with binary items 

in relation with 
gXr  and 

gPr  as well as the family of bi- and polyserial correlations (
BSr , 

PSr ) and the polychoric 

correlation coefficient (
PCr ) (Pearson, 1900; 1913). In comparison with gXr  and gPr , D underestimates IDP less and 

is stable also with the items with extreme difficulty, which 
gXr  and 

gPr  may radically underestimate the IDP of. In 

comparison with 
BSr  and 

PSr , D does not give obvious overestimates nor obvious underestimates as 
BSr  and 

PSr  may 

easily give. In comparison with 
PCr , D relates with the known composite of items and score, and this information can 

be used in further analysis while 
PCr  refers to an unknown, unreachable, and hypothetical composites that are difficult 

to use in the analysis. In comparison with some other directional coefficients such as Goodman״Kruskal lambda and tau 
ɉ'ÏÏÄÍÁÎ Ǫ +ÒÕÓËÁÌȟ ρωυτɊ ÏÒ 0ÅÁÒÓÏÎȭÓ ÅÔÁ ÃÏÅÆÆÉÃÉÅÎÔ ɉh) (Pearson, 1903, 1905), D can detect the ultimate 

discrimination in the item while lambda, tau, and eta can detect the ultimate discrimination in the score. 
ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁȢɊ  

Although D ÓÅÅÍÓ ÔÏ ÂÅ Á ȰÓÕÐÅÒÉÏÒ ÁÌÔÅÒÎÁÔÉÖÅȱ ÆÏÒ 
gXr  and 

gPr  in the binary case, in the comparison by 

-ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊȟ D appeared to face a major practical challenge relevant to polytomous items. Although D 
reaches the ultimate values of IDP accurately, the estimates underestimate the IDP in an obvious manner when the 
number of categories in the marginal distribution of the item exceeds three and when the discrimination is not perfect 
ÏÒ ÎÅÁÒ ÐÅÒÆÅÃÔ ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁȠ ÓÅÅ ÁÌÓÏ 'oktas & Isci; 2011; Newson, 2002). This is elaborated in what 
follows. 

Underestimation in D in the empirical datasets  

-ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊ ÎÏÔÅÄ ÔÈÅ ÏÂÖÉÏÕÓ ÐÁÔÔÅÒÎÓ ÏÆ ÕÎÄÅÒÅÓÔÉÍÁÔÉÏÎ ÉÎ D with real -world datasets. The 
underestimation is strictly related to the number of categories in the items scale, that is, to the degrees of freedom of 
the marginal distribution of the item (df(g) = r ɀ 1). When the number of marginal categories in the item exceeds three 
(df(g) > 2), 

gXr  appears to be superior to D reflecting IDP (Figure 2). 

 

 
Figure 2. Underestimation in D in relation with gXr  (R) as a function of df(g) and 1/df(g) 

 

The right-hand side graph in Figure 2 illustrates a practical peculiarity embedded in 
gXr  as well as in all estimators of 

IDP in item analysis settings, that the estimate approximates perfect 1 the less there are items in the test and the more 
there are categories in the items. The phenomenon is obvious when we recall that, in the measurement modeling 
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settings, the latent variable ʃ is common for both the item and the score (see Figure 1), and that the association of item 
g and score X is determined mechanically because the score is a compound of the items. The latter was the reason why 
Henrysson (1963) suggested his procedure (Rir); 

gXr ÉÓ ÃÈÁÒÁÃÔÅÒÉÚÅÄ ÁÓ ȰÓÐÕÒÉÏÕÓÌÙȱ ÉÎÆÌÁÔÅÄ ɉÅȢÇȢȟ #ÕÒÅÔÏÎȟ ρωφφȟ ÐȢ 

ωσȠ (Ï×ÁÒÄ Ǫ &ÏÒÅÈÁÎÄȟ ρωφςȟ ÐȢ χσρȠ 7ÏÌÆȟ ρωφχȟ ÐȢ ςρɊȢ 7ÈÅÎ ×Å ÔÈÉÎË ÁÂÏÕÔ Á ȰÔÅÓÔȱ ×ÉÔÈ ÏÎÌÙ one item: the 
correlation between the item aÎÄ ÔÈÅ ȰÓÃÏÒÅȱ ÆÏÒÍÅÄ ÂÙ ÔÈÉÓ ÉÔÅÍȟ ×ÏÕÌÄ ÂÅȟ ÏÂÖÉÏÕÓÌÙȟ ÐÅÒÆÅÃÔ 1gX Dr = =. 

Correspondingly, the more we have items comprising the test score the further Pearson correlation between a single 
item and the score tends to deviate from 1 even if the score would explain perfectly the behavior in the item. Obviously, 
this phenomenon of approaching the value 1 does not make sense outside the measurement modeling settings but, in 
what follows, this plays a significant role in deriving the dimension ÃÏÒÒÅÃÔÉÏÎ ÔÏ 3ÏÍÅÒÓȭ D. 

5ÎÄÅÒÅÓÔÉÍÁÔÉÏÎ ÉÎ 3ÏÍÅÒÓȭ $ ×ÉÔÈ ÐÏÌÙÔÏÍÏÕÓ ÉÔÅÍÓ ÆÒÏÍ ÔÈÅ ÔÈÅÏÒÅÔÉÃÁÌ ÖÉÅ×ÐÏÉÎÔ  

Although D underestimates IDP in obvious manner, the interpretation of the matter is somewhat challenging because 
PMC and D tell about different information of the relation of the item and the score discussed above. While r indicates 

covariation between the item and score, D indicates probability that two randomly chosen test-takers have the same 
order in both the item and score or the proportion of logically ordered test-takers in the item after they are ordered by 
the score.  Anyhow, underestimation in D in relation to 

gXr ÉÓ ÅØÐÅÃÔÅÄ ÂÅÃÁÕÓÅ ÏÆ 'ÒÅÉÎÅÒȭÓ ÒÅÌÁÔÉÏÎ ɉ'ÒÅÉÎÅÒȟ ρωπωɊ 

related to the connection of Kendall Tau-Áȟ 3ÏÍÅÒÓȭ D, and Pearson correlation discussed by Kendall (1949) and 
Newson (2002). Assuming two independent variables X and Y with continuous scales (implying no ties) sampled from a 
bivariate normal distribution, Kendall Tau-Á ÅÑÕÁÌÓ 3ÏÍÅÒÓȭ DȢ 4ÈÅÎȟ 'ÒÅÉÎÅÒȭÓ ÒÅÌÁÔÉÏÎ ÇÉÖÅÓ ÔÈÅ ÁÓÓÏÃÉÁÔÉÏÎ ÂÅÔ×ÅÅÎ D 

and 
XYr as: 

sin
2

XY D
p

r
å õ

= æ ö
ç ÷

.     (4)  

From Eq. (4) we know that the values by D of 0, 1 3° , 1 2° , and 1°  correspond to the values by
XYr  of 0, 1 2° , 

1 2° , and 1° , respectively (see Figure 3). Then, in the case of two normally distributed continuous variables, except 

for the extreme values 1°  and 0, the magnitude of 
XYr  is greater than that of D. Consequently, because of Eq. (4), and 

because 
gXr  always underestimates association, the estimates by D are expected to underestimate IDP more than 

gXr  

when the estimate by D differs from 0 and 1°  and the number of marginal categories in the item is high.  
 

 

Figure 3. Relation of Pearson correlation (RXYɊ ÁÎÄ 3ÏÍÅÒÓȭ $ with continuous variables X and Y 

Because of the obvious disadvantage in D with the polytomous items to underestimate IDP even more than 
gXr , 

-ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊ ÓÕÇÇÅÓÔÓ ÔÈÁÔ Á ȰÄÉÍÅÎÓÉÏÎ-ÃÏÒÒÅÃÔÅÄ 3ÏÍÅÒÓȭ Dȱ ÃÏÕÌÄ ÂÅ ×ÏÒÔÈ ÏÆ ÄÅÒÉÖÉÎÇȢ 7ÈÉÌÅ D is a 
ȰÓÕÐÅÒÉÏÒ ÁÌÔÅÒÎÁÔÉÖÅȱ ÔÏ 

gXr  and 
gPr  ÉÎ ÂÉÎÁÒÙ ÄÁÔÁÓÅÔÓȟ ȰÄÉÍÅÎÓÉÏÎ-corrected Dȱ ÃÏÕÌÄ ÂÅ Á ȰÓÕÐÅÒÉÏÒ ÁÌÔÅÒÎÁÔÉÖÅȱ ÉÎ 

the polytomous cases. As far it is known, such correction has not been proposed yet. The aim of the article is to derive a 
dimension-corrected version of D for the measurement modelling settings to reduce the obvious underestimation 
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obtained by D in the polytomous datasets.  

Research questions 

This article derives a dimension-correction version of D for the item analysis settings. After the derivation, the 
following questions are asked: 

1) What are the general characteristics of the new coefficient in comparison with 
gXr , 

gPr , 
BSr , 

PSr , and
PCr ? 

2) What is the sampling variance and standard error of the new coefficient? 
3) To what extent the new coefficient produces obvious underestimates? 
4) To what extent the new coefficient produces obvious overestimates? 

Methodology  

Research design 

4ÈÅ ÃÏÕÒÓÅ ÏÆ ÔÈÅ ÓÔÕÄÙ ÓÔÁÒÔÓ ÂÙ ÄÅÒÉÖÉÎÇ Á ȰÄÉÍÅÎÓÉÏÎ-corrected DȱȢ 4ÈÉÓ ÉÓ ÄÏÎÅ ÂÙ ÍÏÄÅÌÌÉÎÇ ÔÈÅ ÅÒÒÏÒ ÉÎ D in 1,296 
datasets with different number of test-takers (N), test lengths (k), difficulty levels ( p ), reliabilities (a), and degrees of 

freedom in the item df(g) = r  ɀ 1, and in the score df(X) = s ɀ 1. The datasets and items are presented in the next section. 

After the derivation of the new coefficient, the asymptotic sampling variance and standard error are derived and a 
numerical example of the use of the coefficient is given with the comparison with the relevant benchmark coefficients. 

The general characteristics of the new coefficient including the behavior in the extreme datasets, its limits as well as the 
potential over- and underestimation estimation are studied. 

Finally, the advantages, limitations and possible ways to utilize the coefficient are discussed and suggestions for the 
further studies are given. 

Datasets used in the derivation  

The dimension correction to D is derived by using 13,392 real-world items from 1,296 datasets and the knowledge of 
the pattern of underestimation related to df(g) illustrated in Figure 2. The datasets used in the derivation are formed by 
different combinations of randomly selected test-takers from a national-level dataset of 4,000 test-takers of a 
mathematics test for grade 9 with 30 binary items (Finnish Education Evaluation Centre [FINEEC], 2018). The difficulty 
levels of the items in the original dataset ranged from 0.24 < p < 0.95 with the average difficulty level of p  = 0.63, the 

item discrimination ranged from 0.332 0.627gXr< <  with the average 0.481gXr = ,  and the lower bound for the 

reliability was ɻ = 0.885 and, if using the maximal reliability, 0.895MAXr = . By forming different combinations of single 

items and their compilations, the original real-life datasets (87%) and some artificial datasets (13% of tests)ɂto cover 
the very difficult and extremely difficult testsɂwere used to prepare 1,296 tests with variating N (50ɀ100ɀ200), k (2ɀ

30), p  (0.08ɀ0.96), df(g) (1ɀ15),  df(X) (12ɀ27), and ɻ (0.74ɀ0,98). Forming of the dataset in the derivation is 

ÄÅÓÃÒÉÂÅÄ ÉÎ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπςπÁɊȢ 

Table 1 shows the essential characteristics of the tests in the derivation. Notably, the comparatively high reliabilities of 
the tests with difficult and extremely difficult items (0.901ɀ0.956) reflect the fact that the artificial datasets appeared to 
ÐÒÏÄÕÃÅ ÎÏÔÁÂÌÙ ÈÉÇÈÅÒ ÉÔÅÍ״ÔÏÔÁÌ ÃÏÒÒÅÌÁÔÉÏÎÓ ÉÎ ÃÏÍÐÁÒÉÓÏÎ ×ÉÔÈ ÔÈÅ ÒÅÁÌ-world datasets. This matter and its effects 
ÁÒÅ ÄÉÓÃÕÓÓÅÄ ÉÎ 3ÅÃÔÉÏÎ Ȱ-ÁÉÎ ÌÉÍÉÔÁÔÉÏÎÓ ÏÆ ÔÈÅ ÎÅ× ÃÏÅÆÆÉÃÉÅÎÔ ÁÎÄ ÔÈÅ ÐÒÏÃÅÓÓ ÕÓÅÄ ÉÎ ÄÅÒÉÖÁÔÉÏÎȱȢ  

These 1,296 tests produced 13,392 items with varying item characteristics (Table 2). Notably, due to the process of 
forming the datasets (see Appendix), the number of items with the small degrees of freedom in the item scale (df(g ) < 
4) are counted in thousands while the number of items with high degrees of freedom (df(g ) > 10) are counted in tens. 

Data analysis 

The data manipulation was done in IBM SPSS 25 environment. The data mining tool, Decision Tree Analysis (DTA) and 
related CHAID algorithm (Kass, 1980; IBM, 2011), were used in seeking the cut-offs of the variables that explained the 
obvious underestimation for dimension-corrected D. Manual calculations were done by using a standard spreadsheet 
software. 
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Table 1. Selected characteristics of 1,296 tests used in the process 

Average item 
difficulty ( p ) 

n. of 
datasets 

Nature of  
datasets 

Average 

gXr  
Average 

Ra  
0 ɀ 0.299 47 Artificial  0.867 0.901 
0.3 ɀ 0.399 112 Mainly Artificial  0.869 0.927 
0.4 ɀ 0.499 57 Mainly Real-world  0.902 0.956 
0.5 ɀ 0.599 142 Real-world  0.818 0.833 
0.6 ɀ 0.699 721 Real-world  0.821 0.867 
0.7 ɀ 0.799 217 Real-world  0.822 0.863 
Total 1,296  0.830 0.873 

 

Table 2. Selected characteristics of 13,392 items used in the process 

df(g) Number 
of items  

Average 
Rit  

Average 
Rir  

Average 
D 

Average 

BSr  and 
PSr  

Average 

PCr
1 

Number of 
items for 

PCr  

1 7131 0.5063 0.4440 0.6284 0.6703 0.6551 2852 
2 2715 0.6463 0.5658 0.6698 0.7471 0.7290 1080 
3 1233 0.7266 0.6353 0.7035 0.8020 0.7781 494 
4 658 0.7876 0.6818 0.7369 0.8490 0.8253 260 
5 415 0.8230 0.7101 0.7535 0.8717 0.8496 169 
6 335 0.8569 0.7456 0.7779 0.9044 0.8766 131 
7 234 0.8832 0.7535 0.7996 0.9258 0.8959 97 
8 123 0.9032 0.7697 0.8150 0.9467 0.9109 52 
9 165 0.9197 0.7747 0.8363 0.9583 0.9277 62 
10 140 0.9319 0.7623 0.8479 0.9667 0.9388 53 
11 93 0.9427 0.7819 0.8606 0.9785 0.9471 37 
12 74 0.9494 0.8062 0.8670 0.9878 0.9543 35 
13ɀ15 76 0.9488 0.7988 0.8637 0.9805 0.9537 32 
 13,392      5,354 

The dataset of polychoric correlation coefficient comprises 5,354 items from 518 tests by balancing the item 
from the real-world and artificial datasets 

Principles underlying the modelling of the dimension-corrected D 

Based on our knowledge of the characteristics of D and 
gXr  , underlying the process of deriving the correction 

elements, four main notes (N) were made and four consecutive principles (P) were followed:  
 

N1. D gives a credible estimate of IDP when df(gɊ Ѐ ρ ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁɊȢ 
P1. D should be corrected only when df(g) > 1. 
 

N2. 
gXr  always underestimates IDP in item analysis settings where ( ) ( )df g df X<<  ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρφɊȢ 

P2. The estimate by the dimension-corrected D should be higher than that by 
gXr  to overcome the nature of the 

obvious underestimation of IDP in 
gXr . 

N3. D tends to underestimate IDP the more the higher is df(gɊ ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπςπÁȠ .Å×ÓÏÎȟ ςππςɊȢ 
P3. The correction should produce more correction the higher is the df(g). However, with the deterministic patterns 

the correction should reach the perfect value 1.  
 
N4. In real-life settings, D reaches the maximal value 1 while 

gXr  does ÎÏÔ ɉ-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρφȠ ςπςπÁȠ .Å×ÓÏÎȟ 

2002). 
P4. When D = 1, no correction is needed. Additionally, obviously, the dimension-corrected D should not exceed 1.  

 
Because there were no theoretical reasons or empirical evidence to assume that D would under- or overestimate IDP 
when df(g) = 1 (P1), the initial model of the expected non-underestimating value for D with the linear nature is based 
on the assumption that there is no need to correct the estimates in the dichotomous case. Both the assumptions of 
linearity of the non-underestimation and that the estimate by D would be true when df(g) = 1 are questionable and can 
be debated. All in all, we do not know whether the non-underestimation should be linear or curvilinear in nature. In the 
deterministically discriminating dichotomous dataset with an evenly distributed score, the underestimation is elliptic 
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ÉÎ ÎÁÔÕÒÅ ɉÓÅÅ %ÑȢ ςφ ÉÎ Ȱ0ÏÔÅÎÔÉÁÌ ÏÖÅÒÅÓÔÉÍÁÔÉÏÎ ÉÎ D2ȱ ÂÅÌÏ×ɊȢ &ÒÏÍ 'ÒÅÉÎÅÒȭÓ ÒÅÌÁÔÉÏÎ ɉ%ÑȢ τɊ ×Å ËÎÏ× ÔÈÁÔȟ ÉÎ ÓÏÍÅ 
cases, it is a trigonometric function. Here the linear option is selected because of its simplicity. 

Results 

Modelling the dimension-corrected D 

The dimension-ÃÏÒÒÅÃÔÅÄ 3ÏÍÅÒÓȭ D, later called D2, is based on modeling the underestimation in 13,392 empirical 
values of D. Figure 4 illustrates the starting point of the modeling (cf. Figure 2). The dataset suggests that the model 

with cubic nature () () ()
3 2

1.02 2.01 1.32 0.95df g df g df g- + - +  explains the observed distribution of D by 1/ df(g) 

reasonably well (Figure 4). However, the model is somewhat misleading because the polynomial curve should go 
through the points (1/df(g)  = 0, D = 1) and (1/df(g)  = 1, D = 0.6284). The first point obviously indicates that, with 
indefinitely many categories in the item with maximal discrimination, D should reach the value 1 in the same manner as 
the other coefficients would do. The second point refers to the expectation of the level when df(g) = 1. 
 
 

 

Figure 4. 4ÈÅ ÏÒÉÇÉÎÁÌ ÍÏÄÅÌ ÏÆ 3ÏÍÅÒÓȭ $ ÁÎÄ ÉÎÉÔÉÁÌ ÍÏÄÅÌÓ $20 and D21 

The correction in D is based on combining the corrected third-degree model of the observed average levels of D against 

1 ( )df g  (D20, Eq. 5) and a linear model of the expected levels in varying 1 ( )df g  (D21, Eq. 6). The corrected model D20 

of third grade passing through the points (1/df(g)  = 0, D = 1) and (1/df(g)  = 1, D = 0.6284) is:  

 

() () ()

() () () ()

() () ()

20 2 3

2 3

2

1.3716 2 1
1

0.3716 1 2 1
1

0.3716 1 1
1 1

D
df g df g df g

df g df g df g df g

df g df g df g

= - + -

å õ
= - - - +æ ö

æ ö
ç ÷

å õ
= - - -æ öæ ö

ç ÷

   (5)  

 
where 0.3716 = 1 ɀ 0.6284.  

4ÈÅ ÍÁÇÎÉÔÕÄÅ ÏÆ ÔÈÅ ÕÎÄÅÒÅÓÔÉÍÁÔÉÏÎ ÉÓ ÕÎËÎÏ×ÎȢ &ÏÒ ÔÈÅ ÍÏÄÅÌÉÎÇ ÐÕÒÐÏÓÅÓȟ ÔÈÅ ȰÃÏÒÒÅÃÔȱ ÌÅvel of D (D21) was set to 
be linear through the points (1/df(g)  = 0, D = 1) and (1/df(g)  = 1, D = 0.6284) (see Figure 4). This theoretical level of D 
in each df(g) is 

y = -1,0179x3 + 2,0096x2 - 1,3169x + 0,9542 

y = -1x3 + 2x2 - 1,3716x + 1 

y = -0,3716x + 1 
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()
21

0.3716
1D

df g
= - .      (6)  

 
The average level of discrepancy between the theoretical level and the observed level at each level of df(g) is denoted 
by DE: 
 

() () () ()

() ()

21 20

2

2

 

0.3716 0.3716 1 1
1 1 1

1 1
1

ED D D

df g df g df g df g

df g df g

= -

å õå õ
æ ö= - - - - -æ öæ öæ öç ÷ç ÷

å õ
= -æ öæ ö

ç ÷

  (7)  

 
and, hence, the initial correction for D is 

() ()

2

22

1 1
1ED D D D

df g df g

å õ
= + = + -æ öæ ö

ç ÷

.    (8)  

 
The initial model D22 (Eq. 8) appears to be surprisingly good when it comes to increasing the average level of D. 
However, this model increases the magnitude of the estimates too high when D is very high in the beginning; all 
estimates exceeding the limits of association are of 0.830D> . Hence, in the second phase, a switch (1 Ϻ D) related to the 

principle P4 was added to the correction factor DE: ( )1ï ED D³ . This switch turns the correction off in the case of 

ultimate item discrimination when no correction is needed. An additional switch ()( )1df g -  is needed to restrict the 

effect of ( )1 D-  only on items with df(g) > 1. After these, a possible correction factor could be ()( )( )1 1ï Edf g D D- ³ ³ . 

The final suggestion as the dimension-ÃÏÒÒÅÃÔÅÄ 3ÏÍÅÒÓȭ D is, then, 

( )
()( )
() ()

2

2

1 1
1 1

df g
D D D

df g df g

- å õ
= + - ³ -æ öæ ö

ç ÷

.    (9)  

 
By using light algebra, Eq. (9) can be further modified into  
 

( )( )2 1 1 1D D A= - - ³ -     (10) 

  
where D ÒÅÆÅÒÓ ÔÏ 3ÏÍÅÒÓȭ D (g|X) and  

()

() ()

2

1 1
1

df g
A

df g df g

å õ-
= -æ öæ ö

ç ÷

    (11) 

 
The correction in Eq. (10) is relevant to the positive values of DȢ "ÅÃÁÕÓÅ ÏÆ ÔÈÅ ÓÙÍÍÅÔÒÉÃÉÔÙ ÉÎ 3ÏÍÅÒÓȭ D, a more 
general form of D2, comprising also the negative values of D, is 
 

()( )( )( )2 ( ) 1 1 1D sign D abs D A= ³ - - ³ -,   (12) 

 
that is, we first form the dimension correction for the absolute value of D as in Eq. (10) and then, if the original D is 
negative, we give the negative sign to the outcome. D2 appears to be very potential and its characteristics are studied in 
what follows.  
 

Asymptotic sampling variance and standard error of D2 

"ÅÃÁÕÓÅ ÔÈÅ ÓÔÁÔÉÓÔÉÃÁÌ ÐÒÏÐÅÒÔÉÅÓ ÏÆ 3ÏÍÅÒÓȭ D are well documented (e.g. Agresti, 2010; Newson, 2002, 2006, 2008; 
Siegel & Castellan, 1988) the behavior of D2 is known in the case of df(g) = 1. In the dichotomous case, the asymptotic 
sampling variance of D2 can be approximated as  
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( )( )( )( )
2

2
2 2

4
,

4
D D ij r ij ij i

i jr

n D C D P Q N n
D

s s= = - - - -ä   (13) 

 

that leads to asymptotic standard error  
 

( )( )( )( )
2

2 2
,

2
( 1) ( 1) ij r ij ij i

i jr

ASE D ASE D n D C D P Q N n
D

= = - - - -ä  (14) 

 

and, under the hypotheses of independent variables,  
 

( ) ( )
2 2

2

,

2 1
( 0) ( 0) ij ij ij

i jr

ASE D ASE D n C D P Q
D N

= = - - -ä   (15) 

 

where nij is the number of cases in the cell i,j, and ni is the number of test-takers in the row category i, and 

( )2 2

1

r

r i

i

D N n
=

= -ä   

ij hk hk

h i k j h i k j

C n n
< < > >

= +ää ää  

ij hk hk

h i k j h i k j

D n n
< > > <

= +ää ää  

,

ij ij

i j

P n C=ä   

,

ij ij

i j

Q n D=ä .     (16) 

.ÏÔÅ ÔÈÁÔ ÔÈÅ ÆÏÒÍÕÌÁÅ ɉρσɊ ÔÏ ɉρφɊ ÕÓÅ ÄÏÕÂÌÅ ÔÈÁÎ ȰÕÓÕÁÌȱ ÓÉÚÅ ÏÆ ÍÁÇÎÉÔÕÄÅ ÆÏÒ P and Q seen in Eq. (3). These 
calculations are somewhat laborious manually. Somers (1980) offers a short-cut method found also in Siegel & 
#ÁÓÔÅÌÌÁÎ ɉρωψψɊ ÁÎÄ -ÅÔÓßÍÕÕÒÏÎÅÎ ɉςπρχb): 

( )( )2

2 2

2 2

4 1 1

9 ( 1)
D D

r s

Nr s
s s

- +
= º

-
    (17) 

that leads to asymptotic standard error  
 

( )( )2

2 2

4 1 1
( 1) ( 1)

9 ( 1)

r s
ASE D ASE D

Nr s

- +
= º

-
.  (18) 

 

Notably, the simplified approximation of sampling variance depends only on the dimensions of the variables. Hence, for 
all combinations of response patterns with the identical dimensions in the crosstabulation, sampling variance and 
related sampling error are identical.  

To deriving the corresponding sampling variance for the case of df(g) > 1, we remember that, because of Eqs. (10), (12), 
and (11), after simplified, 

   ( ) ( ) ()2

2 constant constantVAR D VAR D VAR D= ³ = ³ .   (19) 

Then, by using the basic laws of variance, we get 
 

( )( )( )

( ) ( )

( )

2

2

2

2 2

1 1 1

1 1

1

D

D

VAR D A

A VAR D

A

s

s

= - - ³ -

= - ³ -

= - ³

    (20) 

where A is as in Eq. (11). Then, 
 

( )( )( )( )
2

2
2

2 2
,

2 ( 1)
( 1) ( 1) ( 1) ij r ij ij i

i jr

A
ASE D A ASE D n D C D P Q N n

D

-
= - ³ = - - - -ä  (21) 

 
and, under the hypotheses of independent variables,  
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( ) ( )
2

2 22

2

,

2 ( 1) 1
( 0) ( 1) ( 0) ij ij ij

i jr

A
ASE D A ASE D n C D P Q

D N

-
= - ³ = - - -ä  (22) 

 

and, if using the simplified short-cut by Somers (1980), 

( )( )( )
22

2 2

4 1 1 1
( 1)

9 ( 1)

r s A
ASE D

Nr s

- + -
º

-
   (23) 

 

Notably, the element ( )
2

1 1A- < always and, hence, the sampling variance and standard error of the estimates by D2 are 

ÁÌ×ÁÙÓ ÓÍÁÌÌÅÒ ÔÈÁÎ ÔÈÏÓÅ ÂÙ 3ÏÍÅÒÓȭ D. When testing the null hypothesis 
0 2: 0H D =  (which is usually not a relevant 

option in the item analysis settings though), we can use the statistic 
 

2

2( 0)

D
z

ASE D
= .     (24) 

 

This value is approximately normally distributed with mean 0 and standard deviation 1 when the null hypothesis is 
true.  
 

A numerical example of D2 

As a numerical example of calculating D2, assume a simple polytomous dataset with N = 25 cases as in Table 3 adapted 
from Cox (1974, p. 177) and Drasgow (1986, p. 70). Let us assume that the dataset would concern an item g and the 
score X.  

Table 3. A hypothetic dataset (Cox, 1974; Drasgow, 1986) 

 
 
 
 

 
 
 

Used by permisson of Biometric society 

Table 4. Contingency table based in Table 3 

  X 
  69 72 77 78 80 81 85 86 87 88 92 93 96 99 101 103 104 108 112 SUM (gi) 
g 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 

1 1 1 1 1 1 1 0 1 1 1 2 1 0 1 1 0 2 1 0 17 
2 0 0 0 0 0 0 1 0 0 0  0 2 0 0 1 1 0 0 5 

 SUM (Xj) 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1 3 1 1 25 

 
)Î ÔÈÅ ÆÉÒÓÔ ÐÈÁÓÅȟ 3ÏÍÅÒÓȭ D is calculated. For this, a cross-table is formed (Table 4). For the manual calculation of 
3ÏÍÅÒÓȭ D, the sums of concordant pairs (P) and discordant pairs (Q) are formed (see Siegel & Castellan, 1988; 
-ÅÔÓßÍÕÕÒÏÎÅÎȟ ςπρχÂɊȢ &or these, the cell frequencies are denoted by nij. For the concordant pairs, we calculate how 

many cases are there in the cells below and to the right  of the cell nij. These are denoted by 
ijN+. Correspondingly, the 

discordant pairs denoted by 
ijN- are found in the cells below and to the left of the cell nij. All possible values for 

ijN+ and 

ijN- are computed and these are multiplied by the related nij. The number of all the pairs in the same direction is 

  

1 20 1 12 6 5 6 4 2 2 90ij ij

ij

P n N+= = ³ + ³ + ³ + ³ + ³ =ä . 

Correspondingly, the number of the pairs in the opposite direction is  
 

1 1 1 9 1 22 6 1 2 3 2 4 1 5 57ij ij

ij

Q n N-= = ³ + ³ + ³ + ³ + ³ + ³ + ³ =ä . 

g X  g X  g X  g X  g X 
0 72  1 77  1 87  1 99  2 85 
0 88  1 78  1 88  1 101  2 96 
0 112  1 80  1 92  1 104  2 96 
1 69  1 81  1 92  1 104  2 103 
1 72  1 86  1 93  1 108  2 104 
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"Ù ÕÓÉÎÇ %ÑȢ ɉσɊȟ ÔÈÅ ÅÓÔÉÍÁÔÅ ÏÆ ÔÈÅ ÁÓÓÏÃÉÁÔÉÏÎ ÂÙ 3ÏÍÅÒÓȭ DɉȰÓÃÏÒÅ ÄÅÐÅÎÄÅÎÔȱɊȟ ÔÈÁÔ ÉÓȟ DɉȰg in condition of XȱɊɗ is  
 

( )
( )

( )

( )

( )2 2 2 2
2 2

1

2 2 90 57 66Ĕ 0.219
30225 3 17 5

g

gj

j

P Q
D g X

N n
=

- ³ -
= = = =

- + +
-ä

. 

For the dimension correction, we need the correction factor A (Eq. 11). With three categories in the item scale, df(g) = 2 
and, hence, 

()

() ()

2

1 1 1 1
1 0.125

2 4

df g
A

df g df g

å õ-
= - = ³ =æ öæ ö

ç ÷

. 

 

Because of Eq. (10), the estimate of the observed association of the item and score by D2 is 
 

( )( ) ( )( )2
Ĕ 1 1 1 1 0.219 1 0.125 1 0.317D D A= - - ³ - = - - ³ - = 

 

with standard error  
 

        2

2
Ĕ( 1) ( 1) ( 1) 0.875 0.242 0.212ASE D A ASE D= - ³ = ³ =. 

 

!Ó ÂÅÎÃÈÍÁÒËÓȟ ÔÈÅ ÅÓÔÉÍÁÔÅÓ ÏÆ ÔÈÅ ÏÂÓÅÒÖÅÄ ÁÓÓÏÃÉÁÔÉÏÎ ÂÁÓÅÄ ÏÎ ÔÈÅ ÍÅÃÈÁÎÉÃÓ ÏÆ 0ÅÁÒÓÏÎȭÓ ÐÒÏÄÕÃÔ-moment 
correlation are Ĕ 0.185gXr =  and, after corrected for the inflation, Ĕ 0.139gPr = . The estimate of the inferred association 

by polyserial correlation is Ĕ 0.216PSr =  and the corresponding estimate by the polychoric correlation isĔ 0.123PCr =  

though the last value depends of the estimation method in some extent.  

General characteristics of D2 

D2 behaves according to the four principles set for the correction. First, the estimates by D are not corrected when df(g) 

= 1. Second, the estimates by D2 tend to be, generally, higher than those by 
gXr , 

gPr , and 
PCr , and close to those by 

PSr , 

although without the obvious overestimation (see Figures 5 and 6). Third, the higher is df(g) the greater the correction 
is in D2. Fourth, D2 does not correct D when item discrimination is deterministic and D = 1. Of the 13,392 items on the 
simulation, none showed a value that was out of range regarding the limits of correlation. 
  

 

Figure 5. Average estimates of selected indices of IDP by varying df(g) 
 
 

                                                        
ɗ Again, it is worth noting the specific wording when it comes to textbooks and outputs relaÔÅÄ ÔÏ 3ÏÍÅÒÓȭ D. All the generally known textbooks and 
ÓÏÆÔ×ÁÒÅ ÐÁÃËÁÇÅÓ ÕÓÅ ÔÈÅ ÔÅÒÍ ȰÓÃÏÒÅ ÄÅÐÅÎÄÅÎÔȱ ÆÏÒ ÔÈÉÓ ÆÏÒÍÕÌÁȢ (Ï×ÅÖÅÒȟ ÉÔ ÔÅÌÌÓ ÕÓ ÈÏ× ×ÅÌÌ ÔÈÅ ÉÔÅÍ ÄÉÓÃÒÉÍÉÎÁÔÅÓ ÔÈÅ Ôest-takers after they are 
ordered by the score, that is, the order in the item depends on the order in the score. 
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